Deep neural network interatomic potentials for α -iron and α -iron–H binary system

Shihao Zhang, Fanshun Meng, Junping Du, Dan Wei, Md. Hossain Rana, Heting Liao, Yangen Li, Yujie Jia, Shuhei Shinzato and Shigenobu Ogata

Osaka University

Purpose Development highly efficient and transferable neural network interatomic potentials for αiron and α-iron–H binary system.

Outline Train and validate the potential. Investigate hydrogen embrittlement for crack model and polycrystalline model using the potential.

Result The efficiency of the potential shows 40 times faster than our previous potential. Hydrogen atoms segregated at crack tip facilitate the brittle-cleavage failure of crack followed by crack growth, as well as those at GB promote the nucleation of intergranular nanovoids and leading to intergranular fracture.

Computing system: node-hour memory used parallelize

SQUID (GPU nodes) 2,000 node-hour 2 TB 1 node for potential training 4 nodes for simulation

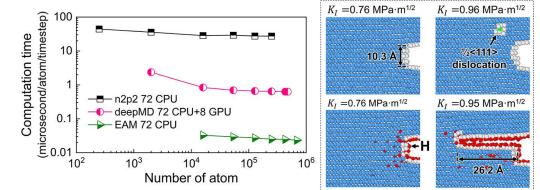


Fig. Performance of DNN potential and simulation results of crack propagation using DNN